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Abstract

Electrophysiology modeling is essential for non-
invasive diagnostics and for advancing our understand-
ing of heart and brain function. Traditional approaches
rely on systems of ordinary differential equations (ODEs),
ranging from detailed ion channel dynamics to reduced-
order models. In this study, we investigate neural networks
as differentiable surrogate models for electrophysiology
simulations, comparing data-driven and physics-informed
approaches using the FitzHugh–Nagumo model. Networks
are trained with numerical solutions, incorporating system
dynamics through tailored loss functions. We introduce
extensive architecture optimization and adaptive training
strategies to enhance performance. Inference accelerated
with NVIDIA TensorRT achieves up to 1.8× speedup over
optimized CUDA solvers with minimal accuracy degrada-
tion. These results demonstrate the potential of neural net-
works as scalable, differentiable emulators for reduced-
order electrophysiology models, enabling their integration
into real-time, AI-accelerated digital twin frameworks for
clinical and research applications.

1. Introduction

In 1952, Hodgkin and Huxley introduced a foundational
model of neuronal action potentials, providing a basis for
decades of electrophysiology research. Their framework
has been extensively adapted for cardiac modeling, crucial
for understanding and managing heart diseases, which re-
main a leading global cause of mortality.

Digital twins, virtual simulations based on patient-
specific data and biophysical models, have transformative
potential for personalized cardiac care [1–3]. These twins
enable early risk assessment and treatment planning but
face computational challenges due to the high cost of solv-
ing biophysical models, especially under uncertainty [4].
This limits their scalability in real-time clinical workflows.

Neural networks may offer an efficient alternative, ap-
proximating differential equation solutions through deep
architectures [5]. Physics-Informed Neural Networks
(PINNs) further enhance this by embedding physical laws
into training, reducing data dependency and ensuring ac-
curacy [6]. This study employs three kinds of neural net-
works for solving the FitzHugh–Nagumo model: Data-
Driven Neural Networks (DDNNs), PINNs, and Iterative
Neural Networks (ITNNs). Using GPU acceleration and
TensorRT for optimization, these differentiable surrogates
combine accuracy and efficiency, enabling scalable digital
twin applications for cardiac care.

2. Methods

To accelerate electrophysiology simulations, we replace
traditional numerical solutions of the FitzHugh–Nagumo
(FHN) [7] model with differentiable neural network surro-
gates. While simple, the FHN model captures key features
of action potentials such as excitability and recovery. It is
governed by two coupled ODEs:

du

dt
= c

(
u− u3

3
− w

)
+ Iiapp, (1)

dw

dt
=

u+ a− bw

τ
. (2)

Here, u is the membrane potential, w the recovery vari-
able, while a, b, c, and τ are model parameters. We train
surrogates for the following three problem settings:
• Problem A: Outputs u,w(t) from a single time input t.
• Problem B: Parameters for initial conditions also in-
cluded: u,w(t, u0, w0).
• Problem C: Adds parameterization of Iiapp, which mod-
ulates oscillation frequency: u,w(t, u0, w0, Iiapp).

This model is used to generate separate train-
ing/validation datasets to train the surrogates using a nu-
merical solution via the Euler method (= 0.01 ms), evenly
exploring the parameter space. After training, surrogate
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speeds are benchmarked against a highly optimized GPU
implementation of the Euler solver using = 0.1 ms, the
highest possible time step size for the error to be less than
10−2, on the same hardware (RTX 4070 GPU, Intel i5-
12400F CPU). Training is done with 1000, 10000, and
100000 samples for each problem respectively, while in-
ference time and validation error are measured for solving
100,000 different samples over 50 ms.

We employ three distinct types of neural networks that
share the same underlying MLP structure but learn with
different loss functions. Multiple architectures are tested
by parameterizing MLP generation with properties such
as number of layers, neurons, and activation functions
per layer. Resulting architectures are classified by shape
depending on the relation of layer sizes, labeling them
square, rectangle, bottleneck, funnel, or bowtie-shaped
networks. Every possible architecture is mapped and a set
of 800 candidates is selected to evenly represent various
model sizes and shapes.
Data-Driven Neural Networks. Data-Driven Neural Net-
works (DDNNs) are regression-based neural models that
learn to approximate the solutions of differential equations
by directly fitting numerical data obtained from an Euler
solver Û , Ŵ . In this approach, the network is trained to
minimize the discrepancy between its predictions and the
generated solutions. The training loss is the mean-squared
error (MSE) computed over a training set containing nu-
merical solutions:

LD =
1

Nset

Nset∑
i=1

1

2

(
Û , Ŵ (ti, ϕi)− U,Wsolver(t

i, ϕi)
)2

.

Physics-Informed Neural Networks. PINNs integrate the
governing FHN differential equations directly into the loss
function via automatic differentiation (AD), exploiting the
fully differentiable nature of our surrogate models. In a
forward pass, the network maps inputs (t, ϕ) to predic-
tions (Û , Ŵ ); a subsequent backward pass computes the
time derivatives ∂Û

∂t and ∂Ŵ
∂t using the chain rule. These

derivatives are compared against the expected dynamics,
encapsulated in the residual function f(t, ϕ) that includes
FHN Equations (1) and (2), resulting in the physics-based
loss:

Lphysics =
1

Nb

Nb∑
i=1

(∂Û , Ŵ (ti, ϕi)

∂t
− fU , fW (ti, ϕi)

)2

,

where Nb is the batch size. To further enforce initial or
boundary conditions, an additional loss term is defined:

LB =
1

Nb

Nb∑
i=1

∥∥∥Û(t = 0, ϕi)−U i
0, Ŵ (t = 0, ϕi)−W i

0

∥∥∥2.
When available, a data-fitting term LD may also be incor-
porated. The combined PINN loss is then expressed as

the weighted sum of each term. We use weight 1 for data
and the PINN interior constraint, and weight 100 for the
boundary.
Iterative Neural Networks. In contrast to the DDNN
and PINN approaches, which learn the entire temporal tra-
jectory in one pass, ITNNs learn a discrete “update rule”
that advances the system state from (Ut,Wt) at time t to
(Ut+∆t,Wt+∆t) at time t + ∆t. The MSE loss then uses
numerical data to enforce the update rule:

LI =
1

Nb

Nb∑
i=1

(
Ûitnn, Ŵitnn(U

i
t ,W

i
t , ϕi)−U i

t+∆t,W
i
t+∆t

)2

.

(3)
By iteratively applying this learned update, the entire

trajectory from t = 0 to t = T can be approximated.
While larger time-steps (∆t) accelerate inference, they re-
quire the network to model more complex transitions; con-
versely, smaller ∆t values simplify individual steps at the
cost of increased iterations. For a fair benchmark, we sam-
ple the PINNs and DDNNs networks once per time unit
(i.e., ∆t = 1) and we use the same interval for the itera-
tive network discrete step, allowing for the same number
of network passes per solution.

All models are trained with the Adam optimizer (initial
learning rate 1 × 10−3, reduce-on-plateau schedule). Af-
ter training the models are compiled using the Tensor RT
engine in order to leverage tensor cores during inference,
and them are bench-marked.

3. Results and Discussions

In general, after optimization, all three approaches em-
ployed, DDNNs, PINNs, and ITNNs, yielded at least some
good surrogates where NNs managed to learn almost the
entire solution space, with only minor error regions con-
centrated around bifurcation points, as shown in Figure 1.
However, each class has its own caveats: PINNs were only
justifiable in data-scarce scenarios, outperforming DDNNs
when data is insufficient but providing no positive effect
when data is sufficient; ITNNs performed worse than the
continuous models, especially in stiff parts of the solutions,
requiring extensive optimization to produce models where
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Figure 1. Example of NN accuracy: true solution (left)
emulator prediction (center) solutions, and error(right) for
a random surrogate of Problem B.
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Figure 2. MAE for 800 models trained for Problems A
(top) and C (bottom), grouped by architecture shape and
neuron count (x axis).

100

Inference Speed

10 2

M
AE

Problem

Problem A
Problem B
Problem C

Figure 3. Model error vs. inference speed (time to eval-
uate 100000 samples in seconds) for models across prob-
lems. Euler results shown dashed.

successive iterations did not diverge; and finally, while
purely data-driven models (DDNNs) had the best accuracy
results, they required large training sets.

PINNs only improved surrogate accuracy when the
training data was insufficient to describe the solution well,
where the data-driven constraints stagnate with the model
far from the actual solution (mean error larger than 0.1).
Further optimizing the physics constraint then pushes the
model much closer to the true solution, decreasing the
error by up to a 100× factor. However, when abundant

data is available, both models converge similarly, render-
ing the physics constraint redundant. In such cases, enforc-
ing physics constraints can hinder training in two primary
ways: increasing computational cost per training iteration
due to additional derivative computations (we observed an
increase in training time of around 2×), and slowing con-
vergence by introducing a more complex and difficult-to-
optimize loss landscape [8, 9], resulting in less efficient
training. Thus, it follows that it is more beneficial to run
the numerical simulation enough times to produce a com-
plete training set than to directly incorporate the ODEs into
training. The amount of data required for this effect varies:
about 100 points are sufficient for the one-dimensional
Problem A, but depending on the range of the additional
parameters, this increases proportionally.

ITNNs generally perform worse than continuous mod-
els. While they can achieve low single-iteration errors, re-
current evaluation often leads to two failure modes (Fig.
4): (I) small errors accumulate over iterations, causing a
temporal shift from the true solution, and (II) high errors
or parameter-space anomalies push the model into unsta-
ble equilibria. Even with added data for high-error regions,
few surrogates avoided these issues, and successful time-
series solutions were not consistently linked to surrogate
size.

Therefore, when enough data is available, the DDNN
models represent a better choice, and such is the case when
building ODE solution surrogates. The cost associated
with generating a larger set is offset by the better perfor-
mance of DDNNs and the lower training time relative to
PINNs. Compared to ITNNs, they are simply more ro-
bust, yielding sufficiently accurate solutions in most cases,
while retaining the key differentiability attribute. How-
ever, depending on the architecture, the DDNNs are able
to approximate the ODE solution with different degrees
of accuracy. Surrogate accuracy varied greatly, even for
models with the same neuron count and number of layers
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Figure 4. Failure modes of ITNN models: unstable equi-
librium (left) and growing temporal shift (right). Numeri-
cal solution shown dashed.

Page 3



as shown in Figure 2, with architecture size limiting ac-
curacy only up to a certain point that changes depending
on problem complexity. Increasing surrogate size beyond
that point has little effect, and up to 10× variation in accu-
racy is observed for same-size architectures, with no single
activation function sequence or shape achieving consistent
advantage. Thus, model optimization played a crucial role
in identifying efficient models.

Systematic evaluation of architectures reveals that most
models are slower than numerical schemes, with infer-
ence speed primarily influenced by neuron count rather
than by the number of layers, constraining effective sur-
rogates to two- or three-layer models with up to 256 neu-
rons. While neuron count has a direct impact on infer-
ence speed, its relationship with accuracy is more nuanced;
larger models exhibit lower accuracy variance and bene-
fit less from architecture optimization. Statistical analysis
shows that for smaller models (< 120 neurons), architec-
ture shape significantly affects performance, as indicated
by higher F-values (19.6 vs. 4.00 for larger models). How-
ever, this influence diminishes with increasing model size,
where neuron count becomes dominant (F-values of 42.8
and 34.5 for small and large models, respectively). Vari-
ance analysis supports this trend: smaller models exhibit
higher extra-group variance in mean error (1.46×10−5 vs.
1.06×10−6), while larger models see converging variances
(3.17× 10−7 vs. 2.08× 10−7). Thus, optimization efforts
are better spent focusing on activation function choice.

4. Conclusions

Our study evaluated neural network surrogates for the
FitzHugh–Nagumo model, comparing Data-Driven Neu-
ral Networks, Physics-Informed Neural Networks, and
Iterative Neural Networks across varying complexities.
DDNNs excel in data-rich scenarios, demonstrating ro-
bustness and lower training costs, outperforming PINNs
and ITNNs in most cases. ITNNs often struggle with
error accumulation, particularly in long-term predictions,
while PINNs perform best in data-scarce scenarios due
to their integration of physical constraints. As shown
in Figure 3, small, accurate models work well for sim-
pler problems but fail as complexity increases, particu-
larly for Problems B and C. The shift from Problem A
to B, which introduces initial condition parameterization,
presents more challenges than the shift from B to C, which
adds a model parameter. This suggests that learning vari-
ations in features (e.g., wave shape, length) is easier than
capturing shifted solutions. Additionally, architectural de-
sign, such as neuron count and activation functions, signif-
icantly influences accuracy, especially in smaller models.
With hardware acceleration provided by TensorRT, these
smaller neural network surrogates can even surpass numer-
ical solvers in speed while remaining differentiable. These

findings highlight the trade-offs between data availability,
computational cost, and model design, providing insights
into how neural surrogates can complement traditional nu-
merical methods in complex simulations.
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